Identification of two partners from the bacterial Kef exchanger family for the apical plasma membrane V-ATPase of Metazoa.

نویسندگان

  • Jonathan P Day
  • Susan Wan
  • Adrian K Allan
  • Laura Kean
  • Shireen A Davies
  • Joe V Gray
  • Julian A T Dow
چکیده

The vital task of vectorial solute transport is often energised by a plasma membrane, proton-motive V-ATPase. However, its proposed partner, an apical alkali-metal/proton exchanger, has remained elusive. Here, both FlyAtlas microarray data and in situ analyses demonstrate that the bacterial kefB and kefC (members of the CPA2 family) homologues in Drosophila, CG10806 and CG31052, respectively, are both co-expressed with V-ATPase genes in transporting epithelia. Immunocytochemistry localises endogenous CG10806 and CG31052 to the apical plasma membrane of the Malpighian (renal) tubule. YFP-tagged CG10806 and CG31052 both localise to the plasma membrane of Drosophila S2 cells, and when driven in principal cells of the Malpighian tubule, they localise specifically to the apical plasma membrane. V-ATPase-energised fluid secretion is affected by overexpression of CG10806, but not CG31052; in the former case, overexpression causes higher basal rates, but lower stimulated rates, of fluid secretion compared with parental controls. Overexpression also impacts levels of secreted Na+ and K+. Both genes rescue exchanger-deficient (nha1 nhx1) yeast, but act differently; CG10806 is driven predominantly to the plasma membrane and confers protection against excess K+, whereas CG31052 is expressed predominantly on the vacuolar membrane and protects against excess Na+. Thus, both CG10806 and CG31052 are functionally members of the CPA2 gene family, colocalise to the same apical membrane as the plasma membrane V-ATPase and show distinct ion specificities, as expected for the Wieczorek exchanger.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Up-regulation of plasma membrane H+-ATPase under salt stress may enable Aeluropus littoralis to cope with stress

Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence o...

متن کامل

Heavy metal regulation of plasma membrane H+-ATPase gene expression in halophyte Aeluropus littoralis

The present study was conducted to find the effect of three heavy metals, Ag, Hg and Pb on the expression level of a gene encoding plasma membrane H+-ATPase in Aeluropus littoralis. The experiment was laid out in a completely random design with three replications. The expression of the main gene was normalized to the expression of the housekeeping gene actin. Two 259 and 187 bp fragments were a...

متن کامل

Polarized targeting of V-ATPase in kidney epithelial cells.

The membrane-associated V-ATPase that plays an important role in the regulation of acid-base balance by the kidney is a multisubunit enzyme that is densely packed into specialized membrane domains in intercalated cells. Intercalated cells can be separated into at least two subtypes, A-cells and B-cells, based on their morphological features, the distribution of V-ATPase, and the presence or abs...

متن کامل

یافته های تازه درباره سلولهای پاریتال معده

During the last five years the recognition of ionic channels in the parietal cells of stomach and acid chloride mechanisms of secretion by these cells has become totally clear by the "Patch Oamp" technique. The apical cytoplasm in the oxyntic cells are in the form of vesicles where membranes contain H+, K+ -ATPase pump. Stimulation causes fusion of these tubular vesicles with the cell membran o...

متن کامل

Role of the AtClC genes in regulation of root elongation in Arabidopsis

The protein family of anion channel (ClC) constitute a family of transmembrane trnsporters that either function as anion channel or as H+/anion exchanger. The expression of three genes of AtClCa, AtClCb and AtClCd in the model plant Arabidopsis thaliana were silenced by a T-DNA insertion . When the pH of the medium was slightly acidic the length of the primary root of plants with a disrupted At...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 121 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2008